
Memo to the CEO
Aral Balkan (http://aralbalkan.com)

Creative Commons Attribution 2.0 UK: England & Wales

http://aralbalkan.com
http://aralbalkan.com

Who am I?

Who am I?
 User experience designer

Who am I?
 User experience designer
 Software architect

Who am I?
 User experience designer
 Software architect
 Flash/Flex developer

Who am I?
 User experience designer
 Software architect
 Flash/Flex developer
 Coach

Who am I?
 User experience designer
 Software architect
 Flash/Flex developer
 Coach
 Trainer

Who am I?
 User experience designer
 Software architect
 Flash/Flex developer
 Coach
 Trainer
 Professional speaker

Who am I?
 User experience designer
 Software architect
 Flash/Flex developer
 Coach
 Trainer
 Professional speaker

Who am I?
 User experience designer
 Software architect
 Flash/Flex developer
 Coach
 Trainer
 Professional speaker
 Open source advocate

Who am I?
 User experience designer
 Software architect
 Flash/Flex developer
 Coach
 Trainer
 Professional speaker
 Open source advocate
 I can tie my own shoelaces

Who am I?
 User experience designer
 Software architect
 Flash/Flex developer
 Coach
 Trainer
 Professional speaker
 Open source advocate
 I can tie my own shoelaces
 Desperate Housewives addict!

I get excited by...

I get excited by...
 Agile development and XP

I get excited by...
 Agile development and XP
 User-centered development

I get excited by...
 Agile development and XP
 User-centered development
 Usability design, patterns, and testing

I get excited by...
 Agile development and XP
 User-centered development
 Usability design, patterns, and testing
 Software architecture

I get excited by...
 Agile development and XP
 User-centered development
 Usability design, patterns, and testing
 Software architecture
 Open source software

I get excited by...
 Agile development and XP
 User-centered development
 Usability design, patterns, and testing
 Software architecture
 Open source software
 Evangeline Lilly

but enough about me

let’s talk about

software development

Houston, we have a
problem...

50-70% of all IT projects fail

Source: Standing Group Chaos Report and other sources.

and what about the
human cost?

of developers

who toil daily

under unrealistic
deadlines

implicit expectations

(e.g., usability and
accessibility)

that are impossible to
satisfy

(because they are
implicit)

(and thus not budgeted
for)

(and thus not planned in)

(or tracked)

Developers: are you
stressed out?

daily?

(Beyond the numbers
there is a very real

human welfare issue
here)

50-70% of all IT projects fail

Source: Standing Group Chaos Report and other sources.

What is failure?

Project failure

• Cancellation

Project failure

• Cancellation

• Schedule delays

Project failure

• Cancellation

• Schedule delays

• Cost overruns

Project failure

• Cancellation

• Schedule delays

• Cost overruns

• User rejection

Project failure

What is success?

Project success

Project success

• Meets requirements

Project success

• Meets requirements

• Delivered on schedule

Project success

• Meets requirements

• Delivered on schedule

• Delivered within budget

Project success

• Meets requirements

• Delivered on schedule

• Delivered within budget

• Accepted by users

If 50-70% of projects fail

The norm in our industry
is failure.

norm |nôrm|
noun
1 (the norm) something that is usual,
typical, or standard

Usual, typical, standard
= failure.

Why?

To understand why, we
have to understand a

core software
development concept...

risk

Yes, risk.

software development =
risk management

Development method and risk

Higher risk

Higher risk

• Big-bang

Higher risk

• Big-bang

• One-shot

Higher risk

• Big-bang

• One-shot

• Inside-out

Waterfall process

Waterfall process

1. Planning and requirements

Waterfall process

1. Planning and requirements

2. Design

Waterfall process

1. Planning and requirements

2. Design

3. Construction

Waterfall process

1. Planning and requirements

2. Design

3. Construction

4. Testing

Waterfall process

1. Planning and requirements

2. Design

3. Construction

4. Testing

5. Deployment

a waterfall process
assumes that there is an

end to development

this is a fundamentally
flawed assumption

a product that is not
being actively developed

is a dead product

Software development is
a process

of refinement.

Waterfall = norm

norm |nôrm|
noun
1 (the norm) something that is usual,
typical, or standard

The norm in our
industry is failure.

So: waterfall = failure.

OK, let’s not be harsh...

waterfall ≅ failure

(with the right people,
almost any process can

succeed)

(but will these right
people be happy working
against a process?)

Lower risk

Lower risk

• Evolutionary

Lower risk

• Evolutionary

• N-shot

Lower risk

• Evolutionary

• N-shot

• Outside-in

Agile Methodologies

Agile manifesto

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

We are uncovering better ways of developing software
by doing it and helping others do it. Through this work
we have come to value:

That is, while there is value in the items on the right,
we value the items on the left more.

Extreme Programming (XP)

Extreme Programming (XP)

• Take processes that work to the extreme.

Extreme Programming (XP)

• Take processes that work to the extreme.

• Customer is part of the team.

Extreme Programming (XP)

• Take processes that work to the extreme.

• Customer is part of the team.

• Responsibilities are correctly allocated:
Customer makes business decisions,
development team makes technical decisions.

Extreme Programming (XP)

• Take processes that work to the extreme.

• Customer is part of the team.

• Responsibilities are correctly allocated:
Customer makes business decisions,
development team makes technical decisions.

• Change happens: how do we stay flexible and
deal with it?

XP: Planning game

XP: Planning game

• Development team meets with the customer
to plan

XP: Planning game

• Development team meets with the customer
to plan

• Customer writes stories using plain English

XP: Planning game

• Development team meets with the customer
to plan

• Customer writes stories using plain English

• i.e., no talk of buttons, windows, clicking

XP: Planning game

• Development team meets with the customer
to plan

• Customer writes stories using plain English

• i.e., no talk of buttons, windows, clicking

• i.e., nothing technical

XP: Planning game

• Development team meets with the customer
to plan

• Customer writes stories using plain English

• i.e., no talk of buttons, windows, clicking

• i.e., nothing technical

• (I mean it, that’s the team’s job!)

XP: Planning game

• Development team meets with the customer
to plan

• Customer writes stories using plain English

• i.e., no talk of buttons, windows, clicking

• i.e., nothing technical

• (I mean it, that’s the team’s job!)

• Customer writes acceptance tests

XP: Planning game

XP: Planning game

• Team takes stories and breaks them down
into tasks

XP: Planning game

• Team takes stories and breaks them down
into tasks

• Team estimates tasks

XP: Planning game

• Team takes stories and breaks them down
into tasks

• Team estimates tasks

• Team adds up the estimates for the tasks to
arrive at estimates for the stories

XP: Planning game

• Team takes stories and breaks them down
into tasks

• Team estimates tasks

• Team adds up the estimates for the tasks to
arrive at estimates for the stories

• Team meets with the customer again.

XP: Planning game

XP: Planning game

• We work in iterations

XP: Planning game

• We work in iterations

• An iteration is 1 - 2 weeks

XP: Planning game

• We work in iterations

• An iteration is 1 - 2 weeks

• We ask the customer to choose the stories
she wants for the first iteration

XP: Planning game

• We work in iterations

• An iteration is 1 - 2 weeks

• We ask the customer to choose the stories
she wants for the first iteration

• (Yes, the customer chooses the stories)

XP: Planning game

• We work in iterations

• An iteration is 1 - 2 weeks

• We ask the customer to choose the stories
she wants for the first iteration

• (Yes, the customer chooses the stories)

• If a story has dependencies, we bring it up at
this point and choose those alongside.

XP

XP

• We start on an iteration

XP

• We start on an iteration

• We design sufficiently for that iteration

XP

• We start on an iteration

• We design sufficiently for that iteration

• (We don’t plan too far ahead)

XP

• We start on an iteration

• We design sufficiently for that iteration

• (We don’t plan too far ahead)

• (Because requirements change)

XP

• We start on an iteration

• We design sufficiently for that iteration

• (We don’t plan too far ahead)

• (Because requirements change)

• So don’t waste time today designing for things
that may change tomorrow. Design for today!

XP

• We start on an iteration

• We design sufficiently for that iteration

• (We don’t plan too far ahead)

• (Because requirements change)

• So don’t waste time today designing for things
that may change tomorrow. Design for today!

• Complexity is not your friend

Complexity happens;
simplicity, you have to

strive for.

XP

XP

• We start working on a story

XP

• We start working on a story

• We work in pairs

XP

• We start working on a story

• We work in pairs

• (Because writing code isn’t what takes the
most time, debugging and maintaining code
are.)

XP

• We start working on a story

• We work in pairs

• (Because writing code isn’t what takes the
most time, debugging and maintaining code
are.)

• Everyone has ownership of the code

XP

• We start working on a story

• We work in pairs

• (Because writing code isn’t what takes the
most time, debugging and maintaining code
are.)

• Everyone has ownership of the code

• (To reduce the Truck Factor)

XP

• We start working on a story

• We work in pairs

• (Because writing code isn’t what takes the
most time, debugging and maintaining code
are.)

• Everyone has ownership of the code

• (To reduce the Truck Factor)

XP

XP

• We finish a story

XP

• We finish a story

• We take it to the customer

XP

• We finish a story

• We take it to the customer

• Customer checks it against the acceptance
test she wrote for the story

XP

• We finish a story

• We take it to the customer

• Customer checks it against the acceptance
test she wrote for the story

• If it passes her acceptance test, customer
accepts the story

XP

• We finish a story

• We take it to the customer

• Customer checks it against the acceptance
test she wrote for the story

• If it passes her acceptance test, customer
accepts the story

• (Great way of controlling feature creep.)

XP

XP

• We use source control

XP

• We use source control

• So we can be brave and not afraid of change

XP

• We use source control

• So we can be brave and not afraid of change

• We unit test

XP

• We use source control

• So we can be brave and not afraid of change

• We unit test

• To create a safety net for ourselves

XP

• We use source control

• So we can be brave and not afraid of change

• We unit test

• To create a safety net for ourselves

• So we can be brave and not afraid of change

XP

XP

• We update the customer if a story takes less
time than we thought so she can add a story
to the current iteration.

XP

• We update the customer if a story takes less
time than we thought so she can add a story
to the current iteration.

• If a story goes over, we tell the customer and
she can take a story out.

Do not differentiate
between bugs and
feature requests

Remove that distinction
from your ticket tracker!

There are only stories.

Software development is
a process

of refinement.

But don’t re-invent the
wheel

use software design
patterns

(common solutions to
common problems)

e.g., a Flash/Flex
framework that is based
on implementations of

design patterns

e.g., Arp
http://osflash.org/arp

http://osflash.org/arp
http://osflash.org/arp

XP: To summarize

XP: To summarize

• Agile methodology

XP: To summarize

• Agile methodology

• Customer is central to development

XP: To summarize

• Agile methodology

• Customer is central to development

• Iterative development

XP: To summarize

• Agile methodology

• Customer is central to development

• Iterative development

• Unit tests

XP: To summarize

• Agile methodology

• Customer is central to development

• Iterative development

• Unit tests

• Pair programming

XP: To summarize

• Agile methodology

• Customer is central to development

• Iterative development

• Unit tests

• Pair programming

• Sufficient design

XP has the customer at
the center of the

development process

but what about the user?

User-Centered Product
Development (UCPD)

Why ask the user?

Once upon a time in
Ireland...

Eircom

Respect user effort!

User Interface Design Principles
http://aralbalkan.com/687

http://aralbalkan.com/687
http://aralbalkan.com/687

Whose life are you trying to make easier:
your’s or the user’s?

Whose life are you trying to make easier:
your’s or the user’s?

Abbey National Business

Co-operative Bank

Checkbox accessibility

is bad

Usability approach to
accessibility

is good

User Interface Design Principles
http://aralbalkan.com/687

http://aralbalkan.com/687
http://aralbalkan.com/687

But, Aral, isn’t all this
“common sense?”

“common sense”

Common Sense is a
dangerous myth.

Almost every bad design decision
can be traced back to someone
thinking it was “common sense.”

If you want usable
applications

that are accepted by
your users

(projects that succeed)

You need to move
beyond “common sense”

to embrace usability
design and testing

and make the user
central to your

development process.

User-Centered Product
Development (UCPD)

But Aral, “anyone can
design a UI”

(and when camcorders
came out, everyone
became Spielberg)

High-level design of UI
appears simple

“anyone can design a UI”

(just look at MySpace
pages and some

shareware applications)

Special UI expertise is needed when
constraints must be met for...

• Competitiveness

• Usability

• Consistency

• Cost

• Resources

• Schedule

UI is a complex creature

Why are UIs complex?

• Not uncommon for 50% of software code to
be UI

• Large number of factors and unknowns

• Non-linear

• Nondeterministic

• Nonorthogonal

UI is competitive
advantage

UI as competitive advantage

• Product feature list is growing; complex

• UI should be a solution to complexity

• Simple, easy-to-use, right features, right price
= competitive advantage

• But how do you achieve this?

UCPD

UCPD

• Software development process

UCPD

• Software development process

• Iterative

UCPD

• Software development process

• Iterative

• Focus on achieving product goals for usability
& other measurable factors in the product life
cycle.

usability is measurable

if you gather usability
requirements alongside
functional requirements

UCPD: Requirements

UCPD: Requirements

• Easy: Business and functional requirements.

UCPD: Requirements

• Easy: Business and functional requirements.

• Overlooked: Usability, accessibility,
consistency and integration requirements.

UCPD: Requirements

• Easy: Business and functional requirements.

• Overlooked: Usability, accessibility,
consistency and integration requirements.

• Quantifiable usability requirements are the
first step towards accountability.

UCPD: Requirements

• Easy: Business and functional requirements.

• Overlooked: Usability, accessibility,
consistency and integration requirements.

• Quantifiable usability requirements are the
first step towards accountability.

• Move from implicit, ambiguous expectations
to explicit, measurable requirements.

UCPD

UCPD

• Involve the user throughout

UCPD

• Involve the user throughout

• (Note: This does not equate to “design by
committee”)

UCPD

• Involve the user throughout

• (Note: This does not equate to “design by
committee”)

• Evaluate/test throughout (test early, test
often)

UCPD

• Involve the user throughout

• (Note: This does not equate to “design by
committee”)

• Evaluate/test throughout (test early, test
often)

• Pros/cons to domain expert in team

and in case I failed to
mention it...

test, test, test!

Testing

Testing

• Opinions of UI and usability experts
important but

Testing

• Opinions of UI and usability experts
important but

• Users & usability testing ultimately determine
whether requirements are met

Testing

• Opinions of UI and usability experts
important but

• Users & usability testing ultimately determine
whether requirements are met

• No test = religious debates

Testing

• Opinions of UI and usability experts
important but

• Users & usability testing ultimately determine
whether requirements are met

• No test = religious debates

• Waste time, erode respect & prevent critical
decisions

Myth of the average user

Myth of the average user

• Good design is not about what most people
like

Myth of the average user

• Good design is not about what most people
like

• There are no right answers

Myth of the average user

• Good design is not about what most people
like

• There are no right answers

• Instead: Does this control work, with these
contents, and this wording, in this context
create a good experience for people who use
this application?

User satisfaction = function of
features, UI, response time, reliability,

installability, information,
maintainability, etc.

UCPD cheat sheet

UCPD cheat sheet

• Know the user: goals and tasks

UCPD cheat sheet

• Know the user: goals and tasks

• Involve users: Test often and iterate

UCPD cheat sheet

• Know the user: goals and tasks

• Involve users: Test often and iterate

• Work to the 80/20 rule

UCPD cheat sheet

• Know the user: goals and tasks

• Involve users: Test often and iterate

• Work to the 80/20 rule

• Layer UIs according to user tasks

UCPD cheat sheet

• Know the user: goals and tasks

• Involve users: Test often and iterate

• Work to the 80/20 rule

• Layer UIs according to user tasks

• Remove needless words and features

UCPD cheat sheet

• Know the user: goals and tasks

• Involve users: Test often and iterate

• Work to the 80/20 rule

• Layer UIs according to user tasks

• Remove needless words and features

• Simplify! As Steve Krug says, “Don’t make me
think!”

Complexity happens;
simplicity, you have to

strive for.

But how simple?

“...as simple as possible,
but not simpler”

(Albert Einstein)

“Cookies! Umm-num-
num-num-num!”

(Cookie Monster)

CEO Cheat Sheet

1. Implement an agile development
methodology such as eXtreme Programming
(XP)

2. Implement a user-centered development
process.

3. Hire good people and trust them to their
jobs (which will, no doubt include not
reinventing the wheel and using software
design patterns in their architectures.)

So, why “Memo to the
CEO?”

“Why me?”

because...

The only way these
processes will get

implemented is if they
have buy in at the

highest levels

because...

it’s a matter of budget

and process

you cannot secretly
implement XP

or have a user-centered
process when usability
testing isn’t budgeted
into every iteration

Grand summary

Grand summary

• Software projects are risky

Grand summary

• Software projects are risky

• In order to control the risk you need to
break from tradition and cut the risk of big-
bang, one-shot, inside-out development.

Grand summary

• Software projects are risky

• In order to control the risk you need to
break from tradition and cut the risk of big-
bang, one-shot, inside-out development.

• Embrace agility and implement a user-
centered development process.

Grand summary

• Software projects are risky

• In order to control the risk you need to
break from tradition and cut the risk of big-
bang, one-shot, inside-out development.

• Embrace agility and implement a user-
centered development process.

• Increase ROI via better understanding of user
needs, tasks, goals and thus higher product
adoption.

yes, I said ROI

and that’s the bottom line!

Thank you! :)

Credits

Aral Balkan: Dry humour and cheesy transitions

Kystal Pritchett: “The Texas Flasher”
Attribution-NonCommerical-NoDerivs 2.0

Mus’lFetish: “red3”
Attribution-NonCommerical-NoDerivs 2.0
http://flickr.com/photos/getnlean/20926369/in/photostream

http://flickr.com/photos/getnlean/20926369/in/photostream
http://flickr.com/photos/getnlean/20926369/in/photostream

Questions?

http://aralbalkan.com
http://osflash.org
http://ariaware.com

Creative Commons Attribution 2.0 UK: England & Wales

http://aralbalkan.com
http://aralbalkan.com
http://osflash.org
http://osflash.org
http://ariaware.com
http://ariaware.com

